Bayesian risk prediction model for colorectal cancer mortality through integration of clinicopathologic and genomic data

通过整合临床病理和基因组数据建立结直肠癌死亡率的贝叶斯风险预测模型

阅读:6
作者:Melissa Zhao, Mai Chan Lau, Koichiro Haruki, Juha P Väyrynen, Carino Gurjao, Sara A Väyrynen, Andressa Dias Costa, Jennifer Borowsky, Kenji Fujiyoshi, Kota Arima, Tsuyoshi Hamada, Jochen K Lennerz, Charles S Fuchs, Reiko Nishihara, Andrew T Chan, Kimmie Ng, Xuehong Zhang, Jeffrey A Meyerhardt, Mingy

Abstract

Routine tumor-node-metastasis (TNM) staging of colorectal cancer is imperfect in predicting survival due to tumor pathobiological heterogeneity and imprecise assessment of tumor spread. We leveraged Bayesian additive regression trees (BART), a statistical learning technique, to comprehensively analyze patient-specific tumor characteristics for the improvement of prognostic prediction. Of 75 clinicopathologic, immune, microbial, and genomic variables in 815 stage II-III patients within two U.S.-wide prospective cohort studies, the BART risk model identified seven stable survival predictors. Risk stratifications (low risk, intermediate risk, and high risk) based on model-predicted survival were statistically significant (hazard ratios 0.19-0.45, vs. higher risk; P < 0.0001) and could be externally validated using The Cancer Genome Atlas (TCGA) data (P = 0.0004). BART demonstrated model flexibility, interpretability, and comparable or superior performance to other machine-learning models. Integrated bioinformatic analyses using BART with tumor-specific factors can robustly stratify colorectal cancer patients into prognostic groups and be readily applied to clinical oncology practice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。