Vitamin D improves the angiogenic properties of endothelial progenitor cells

维生素 D 改善内皮祖细胞的血管生成特性

阅读:6
作者:M Grundmann, M Haidar, S Placzko, R Niendorf, N Darashchonak, C A Hubel, F von Versen-Höynck

Abstract

The main pathogenic feature of preeclampsia is maternal endothelial dysfunction that results from impaired angiogenesis and reduced endothelial repair capacity. In addition, preeclampsia risk is associated with vitamin D deficiency. We hypothesized that vitamin D(3) stimulates proangiogenic properties of endothelial colony-forming cells (ECFCs). ECFCs were obtained and cultured from cord blood and characterized by immunocytochemistry and flow cytometry. Proliferation, total length of tubule formation on Matrigel, expression of VEGF mRNA, and pro-matrix metalloproteinases (MMP)-2 activity were assessed after treatment of ECFCs with vitamin D(3). Specificity of the observed effects was tested by blocking the vitamin D receptor (VDR) or the VEGF signaling pathway. ECFCs treated with 10 nM vitamin D(3) showed a 1.27 times higher tubule formation compared with vehicle-treated controls (1.27 ± 0.19) as well as a 1.36 times higher proliferation rate (1.36 ± 0.06). Vitamin D(3) induced pro-MMP-2 activity (1.29 ± 0.17) and VEGF mRNA levels (1.74 ± 0.73) in ECFCs. VDR blocking by pyridoxal-5-phosphate (0.73 ± 0.19) or small interfering RNA (0.75 ± 0.17) and VEGF inhibition by Su5416 (0.56 ± 0.16) or soluble fms-like tyrosine kinase-1 (0.7 ± 0.14) reduced tubule formation and pro-MMP-2 activity (pyridoxal-5-phosphate: 0.84 ± 0.09; Su5416: 0.79 ± 0.11; or sFlt: 0.88 ± 0.13). This effect was neutralized by vitamin D(3). Consequently, vitamin D(3) significantly promoted angiogenesis in ECFCs in vitro possibly due to an increase in VEGF expression and pro-MMP-2 activity. Since angiogenesis is a crucial feature in the pathophysiology of preeclampsia these findings could explain the positive influence of vitamin D(3) in reducing preeclampsia risk.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。