Synthesis of biocompatible BSA-GMA and two-photon polymerization of 3D hydrogels with free radical type I photoinitiator

生物相容性 BSA-GMA 的合成及利用 I 型自由基光引发剂进行 3D 水凝胶的双光子聚合

阅读:7
作者:Teng Li, Jie Liu, Min Guo, Fan-Chun Bin, Jian-Yu Wang, Atsushi Nakayama, Wei-Cai Zhang, Feng Jin, Xian-Zi Dong, Katsumasa Fujita, Mei-Ling Zheng

Abstract

Although the development of three-dimensional (3D) printing technology is growing rapidly in the biomedical field, it remains a challenge to achieve arbitrary 3D structures with high resolution and high efficiency. Protein hydrogels fabricated by two- photon polymerization (TPP) have excellent mechanical properties, high precision, and 3D architecture. However, a large number of the amino acid group in bovine serum albumin (BSA) would be consumed when the protein-based hydrogels use dyes of free radical type II photoinitiators. In this study, we use glycidyl methacrylate (GMA) to modify BSA molecules to obtain a series of BSA-GMA materials, allowing the protein material to be two-photon polymerized with a water-soluble free radical type I photoinitiator. The precisely controllable 3D structure of the BSA-GMA hydrogel was fabricated by adjusting the concentration of the precursor solution, the degree of methacrylation, and the processing parameters of the TPP technique. Importantly, BSA-GMA materials are free of acidic hazardous substances. Meanwhile, the water-soluble initiator lithium phenyl (2,4,6-trimethylbenzoyl) phosphite (LAP) allows TPP on the vinyl group of the GMA chain and thus without consuming its amino acid group. The as-prepared BSA-GMA hydrogel structure exhibits excellent autofluorescence imaging, pH responsiveness, and biocompatibility, which would provide new avenues for potential applications in tissue engineering and biomedical fields to meet specific biological requirements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。