Engineering and Characterization of 3-Aminotyrosine-Derived Red Fluorescent Variants of Circularly Permutated Green Fluorescent Protein

3-氨基酪氨酸衍生的环状置换绿色荧光蛋白红色荧光变体的工程设计和表征

阅读:7
作者:Hao Zhang, Xiaodong Tian, Jing Zhang, Hui-Wang Ai

Abstract

Introducing 3-aminotyrosine (aY), a noncanonical amino acid (ncAA), into green fluorescent protein (GFP)-like chromophores shows promise for achieving red-shifted fluorescence. However, inconsistent results, including undesired green fluorescent species, hinder the effectiveness of this approach. In this study, we optimized expression conditions for an aY-derived cpGFP (aY-cpGFP). Key factors like rich culture media and oxygen restriction pre- and post-induction enabled high-yield, high-purity production of the red-shifted protein. We also engineered two variants of aY-cpGFP with enhanced brightness by mutating a few amino acid residues surrounding the chromophore. We further investigated the sensitivity of the aY-derived protein to metal ions, reactive oxygen species (ROS), and reactive nitrogen species (RNS). Incorporating aY into cpGFP had minimal impact on metal ion reactivity but increased the response to RNS. Expanding on these findings, we examined aY-cpGFP expression in mammalian cells and found that reductants in the culture media significantly increased the red-emitting product. Our study indicates that optimizing expression conditions to promote a reduced cellular state proved effective in producing the desired red-emitting product in both E. coli and mammalian cells, while targeted mutagenesis-based protein engineering can further enhance brightness and increase method robustness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。