Pharmacological characterization of rat amylin receptors: implications for the identification of amylin receptor subtypes

大鼠胰岛淀粉样多肽受体的药理学表征:对胰岛淀粉样多肽受体亚型鉴定的意义

阅读:6
作者:R J Bailey, C S Walker, A H Ferner, K M Loomes, G Prijic, A Halim, L Whiting, A R J Phillips, D L Hay

Background and purpose

Amylin (Amy) is an important glucoregulatory peptide and AMY receptors are clinical targets for diabetes and obesity. Human (h) AMY receptor subtypes are complexes of the calcitonin (CT) receptor with receptor activity-modifying proteins (RAMPs); their rodent counterparts have not been characterized. To allow identification of the most clinically relevant receptor subtype, the elucidation of rat (r) AMY receptor pharmacology is necessary. Experimental approach: Receptors were transiently transfected into COS-7 cells and cAMP responses measured in response to different agonists, with or without antagonists. Competition binding experiments were performed to determine rAmy affinity. Key

Purpose

Amylin (Amy) is an important glucoregulatory peptide and AMY receptors are clinical targets for diabetes and obesity. Human (h) AMY receptor subtypes are complexes of the calcitonin (CT) receptor with receptor activity-modifying proteins (RAMPs); their rodent counterparts have not been characterized. To allow identification of the most clinically relevant receptor subtype, the elucidation of rat (r) AMY receptor pharmacology is necessary. Experimental approach: Receptors were transiently transfected into COS-7 cells and cAMP responses measured in response to different agonists, with or without antagonists. Competition binding experiments were performed to determine rAmy affinity. Key

Results

rCT was the most potent agonist of rCT((a)) receptors, whereas rAmy was most potent at rAMY(1(a)) and rAMY(3(a)) receptors. rAmy bound to these receptors with high affinity. Rat α-calcitonin gene-related peptide (CGRP) was equipotent to rAmy at both AMY receptors. Rat adrenomedullin (AM) and rAM2/intermedin activated all three receptors but were most effective at rAMY(3(a)) . AC187, AC413 and sCT(8-32) were potent antagonists at all three receptors. rαCGRP(8-37) displayed selectivity for rAMY receptors over rCT((a)) receptors. rAMY(8-37) was a weak antagonist but was more effective at rAMY(1(a)) than rAMY(3(a)) . Conclusions and implications: AMY receptors were generated by co-expression of rCT((a)) with rRAMP1 or 3, forming rAMY(1(a)) and rAMY(3(a)) receptors, respectively. CGRP was more potent at rAMY than at hAMY receptors. No antagonist tested was able to differentiate the rAMY receptor subtypes. The data emphasize the need for and provide a useful resource for developing new CT or AMY receptor ligands as pharmacological tools or potential clinical candidates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。