A zinc finger transcription factor tunes social behaviors by controlling transposable elements and immune response in prefrontal cortex

锌指转录因子通过控制前额叶皮质中的转座因子和免疫反应来调节社会行为

阅读:8
作者:Natalie L Truby, R Kijoon Kim, Gabriella M Silva, Xufeng Qu, Joseph A Picone, Rebecca Alemu, Rachael L Neve, Xiaohong Cui, Jinze Liu, Peter J Hamilton

Abstract

The neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in the rodent prefrontal cortex was previously determined to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189VPR, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189WT. Upon viral delivery of these synthetic ZFP189 transcription factors to mouse prefrontal cortex, we observe that ZFP189-mediated transcriptional control promotes mature dendritic spine morphology on transduced pyramidal neurons. Interestingly, dysregulation of ZFP189-mediated transcription in this brain area, achieved by delivery of synthetic ZFP189VPR, precipitates social behavioral deficits in terms of social interaction, motivation, and the cognition necessary for the maintenance of social hierarchy, without other observable behavioral deficits. By performing RNA sequencing in virally manipulated prefrontal cortex tissues, we discover that ZFP189 transcription factors of opposing regulatory function have opposite influence on the expression of genetic transposable elements as well as genes that participate in immune functions. Collectively, this work reveals that ZFP189 function in the prefrontal cortex coordinates structural and transcriptional neuroadaptations necessary for social behaviors by binding transposable element-rich regions of DNA to regulate immune-related genes. Given the evidence for a co-evolution of social behavior and the brain immune response, we posit that ZFP189 may have evolved to augment brain transposon-associated immune function as a way of enhancing an animal's capacity for functioning in social groups.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。