Matrix effect on surface-catalyzed photolysis of nitric acid

基质效应对硝酸表面催化光解的影响

阅读:9
作者:Chunxiang Ye, Ning Zhang, Honglian Gao, Xianliang Zhou

Abstract

Photolysis rate constant of HNO3 on the surface (HNO3(s)) has been found to be enhanced by 1-4 orders of magnitude from that of gaseous HNO3, with HONO and NO2 as the main products. Such Re-NOx-ification pathway extends the apparent lifetime of reactive nitrogen species and modifies the atmospheric oxidative capacity along its long-rang transport. Despite of its importance, the detailed kinetics and mechanisms of HNO3(s) photolysis are still not clear. Surface film of HNO3 and organic compounds is ubiquitous in the environment and imposes matrix effect on HNO3(s) photolysis. Here we studied photolysis of HNO3 on Pyrex glass in a photochemical flow reactor over a wide range of HNO3 surface density (DHNO3) with or without the presence of model organic compounds. The photolysis rate constant of HNO3(s) varied with DHNO3 and surface-catalysis mechanism was proposed. Organic compounds further enhance the photolysis rate constant by up to one order of magnitude via both photosensitization and H-donating reaction. The H-donating reaction enhances as well the secondary HONO yield from reaction between the primary product NO2 and adjacent H-donor, and thus increases the HONO/NO2 production ratio. Finally, detailed mechanisms involving surface-catalyisis, photosensitization and H-donating reactions was integrated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。