Unlocking latent kinetic information from label-free binding

从无标记结合中解锁潜在动力学信息

阅读:8
作者:John G Quinn, Micah Steffek, John M Bruning, Alexandra Frommlet, Melinda M Mulvihill

Abstract

Transient affinity binding interactions are central to life, composing the fundamental elements of biological networks including cell signaling, cell metabolism and gene regulation. Assigning a defined reaction mechanism to affinity binding interactions is critical to our understanding of the associated structure-function relationship, a cornerstone of biophysical characterization. Transient kinetics are currently measured using low throughput methods such as nuclear magnetic resonance, or stop-flow spectrometry-based techniques, which are not practical in many settings. In contrast, label-free biosensors measure reaction kinetics through direct binding, and with higher throughout, impacting life sciences with thousands of publications each year. Here we have developed a methodology enabling label-free biosensors to measure transient kinetic interactions towards providing a higher throughput approach suitable for mechanistic understanding of these processes. The methodology relies on hydrodynamic dispersion modeling of a smooth analyte gradient under conditions that maintain the quasi-steady-state boundary layer assumption. A transient peptide-protein interaction of relevance to drug discovery was analyzed thermodynamically using transition state theory and numerical simulations validated the approach over a wide range of operating conditions. The data establishes the technical feasibility of this approach to transient kinetic analyses supporting further development towards higher throughput applications in life science.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。