In vitro Differentiation of Human TERT-Transfected Multi-Lineage Progenitor Cells (MLPC) into Immortalized Hepatocyte-Like Cells

人类 TERT 转染的多谱系祖细胞 (MLPC) 体外分化为永生化肝细胞样细胞

阅读:6
作者:Daniel P Collins, Joel H Hapke, Rajagopal N Aravalli, Clifford J Steer

Background

Research directed towards drug development, metabolism, and liver functions often utilize primary hepatocytes (PH) for preliminary in vitro studies. Variability in the in vitro functionality of PH and the unsuitability of hepatocarcinoma cells for these studies have driven researchers to look to ESC, iPS, and other stem cell types using differentiation protocols to provide more reliable and available cells. This study describes the development of hepatocyte-like cells through the in vitro differentiation of human TERT-immortalized cord blood-derived multi-lineage progenitor cells (MLPC). The E12 clonal cell line derived from polyclonal TERT-transfected cells was used throughout the study.

Conclusion

The availability of immortalized hepatocyte-like cell lines could provide a consistent tool for the study of hepatic diseases, drug discovery, and the development of cellular therapies for liver disorders. Utilization of these techniques could provide a basis for the development of bridge therapies for liver failure patients awaiting transplant.

Methods

E12 MLPC were subjected to a three-step differentiation protocol using alternating combinations of growth factors, cytokines, and maturational factors. Cells at various stages of differentiation were analyzed for consistency with PH by morphology, immunohistochemistry, urea production, and gene expression.

Results

E12 MLPC were shown to significantly change morphology with each stage of differentiation. Coincidental with the morphological changes in the cells, immunohistochemistry data documented the differentiation to committed endoderm by the expression of SOX-17 and GATA-4; the progression to committed hepatocyte-like cells by the expression of a large number of markers including α-fetoprotein and albumin; and the final differentiation by the expression of nuclear and cytoplasmic HNF4. Fully differentiated cells demonstrated gene expression, urea production, and immunohistochemistry consistent with PH. A methodology and medium formulation to continuously expand the E12-derived hepatocyte-like cells is described.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。