The reaction of hydrogen sulfide with disulfides: formation of a stable trisulfide and implications for biological systems

硫化氢与二硫化物的反应:稳定的三硫化物的形成及其对生物系统的影响

阅读:7
作者:Christopher L Bianco, Takaaki Akaike, Tomoaki Ida, Peter Nagy, Virag Bogdandi, John P Toscano, Yoshito Kumagai, Catherine F Henderson, Robert N Goddu, Joseph Lin, Jon M Fukuto

Background and purpose

The signalling associated with hydrogen sulfide (H2 S) remains to be established, and recent studies have alluded to the possibility that H2 S-derived species play important roles. Of particular interest are hydropersulfides (RSSH) and related polysulfides (RSSn R, n > 1). This work elucidates the fundamental chemical relationship between these sulfur species as well as examines their biological effects. Experimental approach: Using standard analytical techniques (1 H-NMR and MS), the equilibrium reactions between H2 S, disulfides (RSSR), RSSH, dialkyltrisulfides (RSSSR) and thiols (RSH) were examined. Their ability to protect cells from electrophilic and/or oxidative stress was also examined using cell culture. Key

Purpose

The signalling associated with hydrogen sulfide (H2 S) remains to be established, and recent studies have alluded to the possibility that H2 S-derived species play important roles. Of particular interest are hydropersulfides (RSSH) and related polysulfides (RSSn R, n > 1). This work elucidates the fundamental chemical relationship between these sulfur species as well as examines their biological effects. Experimental approach: Using standard analytical techniques (1 H-NMR and MS), the equilibrium reactions between H2 S, disulfides (RSSR), RSSH, dialkyltrisulfides (RSSSR) and thiols (RSH) were examined. Their ability to protect cells from electrophilic and/or oxidative stress was also examined using cell culture. Key

Results

H2 S, RSSR, RSSH, RSSSR and RSH are all in a dynamic equilibrium. In a biological system, these species can exist simultaneously, and thus, it is difficult to discern which species is (are) the biological effector(s). Treatment of cells with the dialkyl trisulfide cysteine trisulfide (Cys-SSS-Cys) resulted in high intracellular levels of hydropersulfides and protection from electrophilic stress. Conclusions and implications: In aqueous systems, the reaction between H2 S and RSSR results in the formation of equilibria whereby H2 S, RSH, RSSR, RSSH and RSSSR are present. In a biological system, any of these species can be responsible for the observed biological activity. These equilibrium species can also be generated via the reaction of RSH with RSSSR. Due to these equilibria, Cys-SSS-Cys can be a method for generating any of the other species. Importantly, HEK293T cells treated with Cys-SSS-Cys results in increased levels of hydropersulfides, allowing examination of the biological effects of RSSH. Linked articles: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。