Identification of MMP9 as a Novel Biomarker to Mitochondrial Metabolism Disorder and Oxidative Stress in Calcific Aortic Valve Stenosis

鉴定 MMP9 为钙化性主动脉瓣狭窄中线粒体代谢紊乱和氧化应激的新型生物标志物

阅读:9
作者:Cong Liu, Ruixue Liu, Zhezhe Cao, Qiao Guo, He Huang, Liangming Liu, Yingbin Xiao, Chenyang Duan, Ruiyan Ma

Abstract

Calcific aortic valve stenosis (CAVS) is the most common heart valve disorder among humans. To date, no effective method has been identified to prevent this disease. Herein, we aimed to identify novel diagnostic and mitochondria-related biomarkers of CAVS, based on two machine learning algorithms. We further explored their association with infiltrating immune cells and studied their potential function in CAVS. The GSE12644, GSE51472, and GSE83453 expression profiles were downloaded from the Gene Expression Omnibus (GEO) repository. The GSE12644 and GSE51472 datasets were integrated to identify differentially expressed genes (DEGs). GSE12644 contains 10 normal and 10 CAVS samples, whereas GSE51472 contains 5 normal and 10 CAVS samples. GO and KEGG assays of DEGs were conducted, and the correlation between matrix metalloproteinase 9 (MMP9) expression and immune cell infiltration was explored, using CIBERSORT. The LASSO regression model and SVM-RFE analysis were used to identify diagnostic genes. The expression of MMP9 in CAVS and non-CAVS samples was measured using RT-PCR, western blotting and immunohistochemistry. A series of functional experiments were performed to explore the potential role of MMP9 in mitochondrial metabolism and oxidative stress during CAVS progression. Twenty-two DEGs were identified, of which six genes (SCG2, PPBP, TREM1, CCL19, WIF1, and MMP9) were ultimately distinguished as diagnostic genes in CAVS. Of these, MMP9 was indicated as a mitochondria-related gene, the expression and diagnostic value of which were further confirmed in the GSE83453 dataset. Correlation analysis revealed a positive correlation between MMP9 and infiltrating immune cells. In our cohort, MMP9 expression was distinctly increased in CAVS samples, and its inhibition attenuated the calcification of valve interstitial cells (VICs) by suppressing mitochondrial damage and oxidative stress. Taken together, our findings suggest MMP9 as a novel mitochondrial dysfunction biomarker and therapeutic target for CAVS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。