Nanomaterial-Facilitated Cyclin-Dependent Kinase 7 Inhibition Suppresses Gallbladder Cancer Progression via Targeting Transcriptional Addiction

纳米材料促进的细胞周期蛋白依赖性激酶 7 抑制通过靶向转录成瘾抑制胆囊癌进展

阅读:10
作者:Chen-Song Huang, Qiong-Cong Xu, Chunlei Dai, Liying Wang, Yi-Chih Tien, Fuxi Li, Qiao Su, Xi-Tai Huang, Jun Wu, Wei Zhao, Xiao-Yu Yin

Abstract

Gallbladder cancer (GBC) is the most aggressive malignancy of the biliary tract cancer, and there is a lack of effective treatment. Here, we developed a nanoparticle platform (8P4 NP) that can deliver THZ1, a cyclin-dependent kinase 7 (CDK7) inhibitor, to treat GBC. Analysis of datasets demonstrated that CDK7 was positively correlated with poor prognosis. CDK7 inhibition suppressed cell proliferation, induced apoptosis, and caused cell cycle block in GBC cells. THZ1 downregulated CDK7-mediated phosphorylation of RNA polymerase II (RNAPII), resulting in a significant downregulation of transcriptional programs, with a preferential repression of oncogenic transcription factors. To improve the tumor targeting efficiency of THZ1, 8P4 NPs were prepared and assembled with THZ1 to form THZ1@8P4 NPs. Compared with free THZ1, THZ1@8P4 NPs showed more advantages in prolonging blood circulation, escaping from lysosomes and increasing cellular uptake. Importantly, THZ1@8P4 NPs demonstrated a more significant inhibition effect on GBC cells than free THZ1 in vitro. In addition, THZ1@8P4 NPs could efficiently deliver THZ1 to tumor sites in a patient-derived xenograft model of early recurrence, leading to tumor regression and transcriptional inhibition with minimal toxicity. In summary, we conclude that THZ1@8P4 NPs provide a potent therapeutic strategy that targets CDK7-mediated transcriptional addiction in GBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。