Anti-Oxidant and Anti-Aging Effects of Phlorizin Are Mediated by DAF-16-Induced Stress Response and Autophagy in Caenorhabditis elegans

根皮苷的抗氧化和抗衰老作用由 DAF-16 诱导的秀丽隐杆线虫应激反应和自噬介导

阅读:5
作者:Suhyeon Park, Sang-Kyu Park

Abstract

Phlorizin (phloridzin) is a polyphenolic phytochemical primarily found in unripe Malus (apple). It is a glucoside of phloretin and acts as an inhibitor of renal glucose transport, thus lowering blood glucose. The objective of this study was to determine effects of dietary supplementation with phlorizin on stress response, aging, and age-related diseases using Caenorhabditis elegans as a model system. Survival after oxidative stress or ultraviolet irradiation was significantly increased by pre-treatment of phlorizin. Dietary supplementation with phlorizin also significantly extended lifespans without reducing fertility. Age-related decline of muscle function was delayed by supplementation with phlorizin. Phlorizin induced the expression of stress-responsive genes hsp-16.2 and sod-3 and nuclear localization of DAF-16, a FOXO transcription factor modulating stress response and lifespan in C. elegans. Amyloid-beta-induced toxicity was significantly reduced by phlorizin. This effect was dependent on DAF-16 and SKN-1. Increased mortality induced with a high-glucose diet was partially prevented by phlorizin via SKN-1. Inactivation of dopaminergic neurons observed in a Parkinson's disease model was completely recovered by supplementation with phlorizin. Genetic analysis suggests that lifespan extension by phlorizin is mediated through oxidative stress response and autophagy. Taken together, these data suggest that phlorizin has strong anti-oxidant and anti-aging activities with potential to be developed as a novel anti-oxidant nutraceutical against aging and age-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。