Role of Lysine-Specific Demethylase 1 in Metabolically Integrating Osteoclast Differentiation and Inflammatory Bone Resorption Through Hypoxia-Inducible Factor 1α and E2F1

赖氨酸特异性脱甲基酶 1 通过缺氧诱导因子 1α 和 E2F1 在代谢整合破骨细胞分化和炎症性骨吸收中的作用

阅读:5
作者:Kohei Doi, Koichi Murata, Shuji Ito, Akari Suzuki, Chikashi Terao, Shinichiro Ishie, Akio Umemoto, Yoshiki Murotani, Kohei Nishitani, Hiroyuki Yoshitomi, Takayuki Fujii, Ryu Watanabe, Motomu Hashimoto, Kosaku Murakami, Masao Tanaka, Hiromu Ito, Kyung-Hyun Park-Min, Lionel B Ivashkiv, Akio Morinobu, 

Conclusion

LSD1 metabolically regulates osteoclastogenesis in an energy-demanding inflammatory environment. These findings provide potential new therapeutic strategies targeting osteoclasts in the management of inflammatory arthritis, including in patients with RA.

Methods

LSD1-specific inhibitors and gene silencing with small interfering RNAs were used to inhibit the expression of LSD1 in human osteoclast precursor cells derived from CD14-positive monocytes, with subsequent assessment by RNA-sequencing analysis. In experimental mouse models of arthritis, inflammatory osteolysis, or osteoporosis, features of accelerated bone loss and inflammatory osteolysis were analyzed. Furthermore, in blood samples from patients with RA, cis-acting expression quantitative trait loci (cis-eQTL) were analyzed for association with the expression of hypoxia-inducible factor 1α (HIF-1α), and associations between HIF-1α allelic variants and extent of bone erosion were evaluated.

Objective

Hypoxia occurs in tumors, infections, and sites of inflammation, such as in the affected joints of patients with rheumatoid arthritis (RA). It alleviates inflammatory responses and increases bone resorption in inflammatory arthritis by enhancing osteoclastogenesis. The mechanism by which the hypoxia response is linked to osteoclastogenesis and inflammatory bone resorption is unclear. This study was undertaken to evaluate whether the protein lysine-specific demethylase 1 (LSD1) metabolically integrates inflammatory osteoclastogenesis and bone resorption in a state of inflammatory arthritis.

Results

In human osteoclast precursor cells, RANKL induced the expression of LSD1 in a mechanistic target of rapamycin-dependent manner. Expression of LSD1 was higher in synovium from RA patients than in synovium from osteoarthritis patients. Inhibition of LSD1 in human osteoclast precursors suppressed osteoclast differentiation. Results of transcriptome analysis identified several LSD1-mediated hypoxia and cell-cycle pathways as key genetic pathways involved in human osteoclastogenesis. Furthermore, HIF-1α protein, which is rapidly degraded by the proteasome in a normoxic environment, was found to be expressed in RANKL-stimulated osteoclast precursor cells. Induction of LSD1 by RANKL stabilized the expression of HIF-1α protein, thereby promoting glycolysis, in conjunction with up-regulation of the transcription factor E2F1. Analyses of cis-eQTL revealed that higher HIF-1α expression was associated with increased bone erosion in patients with RA. Inhibition of LSD1 decreased pathologic bone resorption in mice, both in models of accelerated osteoporosis and models of arthritis and inflammatory osteolysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。