DEPTOR induces a partial epithelial-to-mesenchymal transition and metastasis via autocrine TGFβ1 signaling and is associated with poor prognosis in hepatocellular carcinoma

DEPTOR 通过自分泌 TGFβ1 信号诱导部分上皮-间质转化和转移,并与肝细胞癌预后不良相关

阅读:6
作者:Jin Chen, Haidan Zhu, Qiumeng Liu, Deng Ning, Zhaoqi Zhang, Long Zhang, Jie Mo, Pengcheng Du, Xu Liu, Shasha Song, Yawei Fan, Huifang Liang, Jikui Liu, Bixiang Zhang, Xiaoping Chen

Background

DEPTOR is an endogenous inhibitor of mTORC1 and mTORC2 that plays a vital role in the progression of human malignances. However, the biological function of DEPTOR in HCC metastasis and the underlying molecular mechanisms are still unclear.

Conclusion

DEPTOR promotes the EMT and metastasis of HCC cells by activating the TGF-β1-smad3/smad4-snail pathway via mTOR inhibition. Therefore, targeting DEPTOR may be an ideal treatment strategy for inhibiting the growth and metastasis of HCC.

Methods

Western blot analysis and immunohistochemistry(IHC) were employed to examine DEPTOR expression in HCC cell lines and tissues. A series of in vivo and in vitro assays were performed to determine the function of DEPTOR and the possible mechanisms underlying its role in HCC metastasis.

Results

We found that DEPTOR was frequently overexpressed in HCC tissues, and its high expression was associated with high serum AFP levels, increased tumor size, vascular invasion and more advanced TMN and BCLC stage, as well as an overall poor prognosis. Functional experiments demonstrated that DEPTOR silencing inhibited the proliferation and mobility of HCC cells in vitro and suppressed tumor growth and metastasis of HCC cells in vivo. Accordingly, DEPTOR overexpression promoted the invasion and metastasis of HCC cells in vitro and in vivo, but had no effect on cell proliferation in vitro. Overexpression of DEPTOR induced EMT by snail induction. Conversely, knockdown of snail expression impaired the DEPTOR-induced migration, invasion and EMT of HCC cells. Furthermore, we found that the increase of snail expression by DEPTOR overexpression was due to an activation of TGF-β1-smad3/smad4 signaling possibly through feedback inhibition of mTOR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。