Antibiotic tolerance in environmentally stressed Bacillus subtilis: physical barriers and induction of a viable but nonculturable state

环境应激枯草芽孢杆菌的抗生素耐受性:物理屏障和可行但不可培养状态的诱导

阅读:4
作者:Luiza P Morawska, Oscar P Kuipers

Abstract

Bacterial communities exposed to rapid changes in their habitat encounter different forms of stress. Fluctuating conditions of the microenvironment drive microorganisms to develop several stress responses to sustain growth and division, like altering gene expression and changing the cell's physiology. It is commonly known that these protection systems may give rise to differently adapted subpopulations and indirectly impact bacterial susceptibility to antimicrobials. This study focuses on the adaptation of a soil-dwelling bacterium, Bacillus subtilis, to sudden osmotic changes, including transient and sustained osmotic upshift. Here, we demonstrate that physiological changes caused by pre-exposure to osmotic stress facilitate B. subtilis' entry into a quiescent state, helping them survive when exposed to a lethal antibiotic concentration. We show that the adaptation to transient osmotic upshift with 0.6 M NaCl causes decreased metabolic rates and lowered antibiotic-mediated ROS production when cells were exposed to the aminoglycoside antibiotic kanamycin. Using a microfluidic platform combined with time-lapse microscopy, we followed the uptake of fluorescently labelled kanamycin and examined the metabolic activity of differently preadapted populations at a single-cell level. The microfluidics data revealed that under the conditions tested, B. subtilis escapes from the bactericidal activity of kanamycin by entering into a nongrowing dormant state. Combining single-cell studies and population-wide analysis of differently preadapted cultures, we demonstrate that kanamycin-tolerant B. subtilis cells are entrapped in a viable but nonculturable (VBNC) state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。