A comprehensive analysis of the WRKY family in soybean and functional analysis of GmWRKY164-GmGSL7c in resistance to soybean mosaic virus

大豆WRKY家族综合分析及GmWRKY164-GmGSL7c抗大豆花叶病毒功能分析

阅读:4
作者:Zhihua Zhao #, Rongna Wang #, Weihua Su #, Tianjie Sun, Mengnan Qi, Xueyan Zhang, Fengju Wei, Zhouliang Yu, Fuming Xiao, Long Yan, Chunyan Yang, Jie Zhang, Dongmei Wang

Background

Soybean mosaic disease caused by soybean mosaic virus (SMV) is one of the most devastating and widespread diseases in soybean producing areas worldwide. The WRKY transcription factors (TFs) are widely involved in plant development and stress responses. However, the roles of the GmWRKY TFs in resistance to SMV are largely unclear.

Conclusion

Our findings suggest that GmWRKY164 plays a positive role in resistance to SMV infection by regulating the expression of GmGSL7c, resulting in the deposition of callose and the inhibition of viral movement, which provides guidance for future studies in understanding virus-resistance mechanisms in soybean.

Results

Here, 185 GmWRKYs were characterized in soybean (Glycine max), among which 60 GmWRKY genes were differentially expressed during SMV infection according to the transcriptome data. The transcriptome data and RT-qPCR results showed that the expression of GmWRKY164 decreased after imidazole treatment and had higher expression levels in the incompatible combination between soybean cultivar variety Jidou 7 and SMV strain N3. Remarkably, the silencing of GmWRKY164 reduced callose deposition and enhanced virus spread during SMV infection. In addition, the transcript levels of the GmGSL7c were dramatically lower upon the silencing of GmWRKY164. Furthermore, EMSA and ChIP-qPCR revealed that GmWRKY164 can directly bind to the promoter of GmGSL7c, which contains the W-box element.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。