S phase-coupled E2f1 destruction ensures homeostasis in proliferating tissues

相耦合 E2f1 破坏确保增殖组织中的体内平衡

阅读:9
作者:Jean M Davidson, Robert J Duronio

Abstract

Precise control of cell cycle regulators is critical for normal development and tissue homeostasis. E2F transcription factors are activated during G1 to drive the G1-S transition and are then inhibited during S phase by a variety of mechanisms. Here, we genetically manipulate the single Drosophila activator E2F (E2f1) to explore the developmental requirement for S phase-coupled E2F down-regulation. Expression of an E2f1 mutant that is not destroyed during S phase drives cell cycle progression and causes apoptosis. Interestingly, this apoptosis is not exclusively the result of inappropriate cell cycle progression, because a stable E2f1 mutant that cannot function as a transcription factor or drive cell cycle progression also triggers apoptosis. This observation suggests that the inappropriate presence of E2f1 protein during S phase can trigger apoptosis by mechanisms that are independent of E2F acting directly at target genes. The ability of S phase-stabilized E2f1 to trigger apoptosis requires an interaction between E2f1 and the Drosophila pRb homolog, Rbf1, and involves induction of the pro-apoptotic gene, hid. Simultaneously blocking E2f1 destruction during S phase and inhibiting the induction of apoptosis results in tissue overgrowth and lethality. We propose that inappropriate accumulation of E2f1 protein during S phase triggers the elimination of potentially hyperplastic cells via apoptosis in order to ensure normal development of rapidly proliferating tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。