Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations

鲁索替尼可部分逆转信号转导和转录激活因子 1 (STAT1) 获得功能突变患者的功能性自然杀伤细胞缺陷

阅读:9
作者:Alexander Vargas-Hernández, Emily M Mace, Ofer Zimmerman, Christa S Zerbe, Alexandra F Freeman, Sergio Rosenzweig, Jennifer W Leiding, Troy Torgerson, Matthew C Altman, Edith Schussler, Charlotte Cunningham-Rundles, Ivan K Chinn, Alexandre F Carisey, Imelda C Hanson, Nicholas L Rider, Steven M Holla

Background

Natural killer (NK) cells are critical innate effector cells whose development is dependent on the Janus kinase-signal transducer and activator of transcription (STAT) pathway. NK cell deficiency can result in severe or refractory viral infections. Patients with STAT1 gain-of-function (GOF) mutations have increased viral susceptibility.

Conclusions

Properly regulated STAT1 signaling is critical for NK cell maturation and function. Modulation of increased STAT1 phosphorylation with ruxolitinib is an important option for therapeutic intervention in patients with STAT1 GOF mutations.

Methods

NK cell phenotype and function were determined in 16 patients with STAT1 GOF mutations. NK cell lines expressing patients' mutations were generated with clustered regularly interspaced short palindromic repeats (CRISPR-Cas9)-mediated gene editing. NK cells from patients with STAT1 GOF mutations were treated in vitro with ruxolitinib.

Objective

We sought to investigate NK cell function in patients with STAT1 GOF mutations.

Results

Peripheral blood NK cells from patients with STAT1 GOF mutations had impaired terminal maturation. Specifically, patients with STAT1 GOF mutations have immature CD56dim NK cells with decreased expression of CD16, perforin, CD57, and impaired cytolytic function. STAT1 phosphorylation was increased, but STAT5 was aberrantly phosphorylated in response to IL-2 stimulation. Upstream inhibition of STAT1 signaling with the small-molecule Janus kinase 1/2 inhibitor ruxolitinib in vitro and in vivo restored perforin expression in CD56dim NK cells and partially restored NK cell cytotoxic function. Conclusions: Properly regulated STAT1 signaling is critical for NK cell maturation and function. Modulation of increased STAT1 phosphorylation with ruxolitinib is an important option for therapeutic intervention in patients with STAT1 GOF mutations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。