Localization-Based Super-Resolution Microscopy Reveals Relationship between SARS-CoV2 Spike and Phosphatidylinositol (4,5)-bisphosphate

基于定位的超分辨率显微镜揭示了 SARS-CoV2 刺突与磷脂酰肌醇 (4,5)-二磷酸之间的关系

阅读:7
作者:Prakash Raut, Hang Waters, Joshua Zimmberberg, Bright Obeng, Julie Gosse, Samuel T Hess

Abstract

Localization microscopy circumvents the diffraction limit by identifying and measuring the positions of numerous subsets of individual fluorescent molecules, ultimately producing an image whose resolution depends on the uncertainty and density of localization, and whose capabilities are compatible with imaging living specimens. Spectral resolution can be improved by incorporating a dichroic or dispersive element in the detection path of a localization microscope, which can be useful for separation of multiple probes imaged simultaneously and for detection of changes in emission spectra of fluorophores resulting from changes in their environment. These methodological advances enable new biological applications, which in turn motivate new questions and technical innovations. As examples, we present fixed-cell imaging of the spike protein SARS-CoV2 (S) and its interactions with host cell components. Results show a relationship between S and the lipid phosphatidylinositol (4,5)-bisphosphate (PIP2). These findings have ramifications for several existing models of plasma membrane organization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。