Prediction of Concrete Fragments Amount and Travel Distance under Impact Loading Using Deep Neural Network and Gradient Boosting Method

基于深度神经网络和梯度提升方法预测冲击载荷下混凝土碎片数量和行进距离

阅读:10
作者:Kyeongjin Kim, WooSeok Kim, Junwon Seo, Yoseok Jeong, Meeju Lee, Jaeha Lee

Abstract

In the present study, the amount of fragments generated and their travel distances due to vehicle collision with concrete median barrier (CMB) was analyzed and predicted. In this regard, machine learning was applied to the results of numerical analysis, which were developed by comparing with field test. The numerical model was developed using smoothed particle hydrodynamics (SPH). SPH is a mesh-free method that can be used to predict the amount of fragments and their travel distances from concrete structures under impact loading. In addition, deep neural network (DNN) and gradient boosting machine (GBM) were also employed as machine learning methods. In this study, the results of DNN, GBM, and numerical analysis were then compared with the conducted field test. Such comparisons revealed that numerical analysis generated lower error than both DNN and GBM. When prediction results of both the amount of fragments and their travel distances were considered, the result of DNN showed smaller errors than that of GBM. Therefore, in studies where machine learning is used to predict the amount of fragments and their travel distances, careful selection of an appropriate method from the various available machine learning methods such as DNN, GBM, and random forest is absolutely important.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。