c-Maf increases apoptosis in peripheral CD8 cells by transactivating Caspase 6

c-Maf 通过激活 Caspase 6 增加外周 CD8 细胞凋亡

阅读:5
作者:Siying Peng, Hailong Wu, Yin-Yuan Mo, Kounosuke Watabe, Mary E Pauza

Abstract

In addition to transactivation of interleukin-4 (IL-4), cellular muscular aponeurotic fibrosarcoma (c-Maf) enhances CD4 cell apoptosis by limiting Bcl-2 expression. The CD8 cells also express c-Maf and peripheral CD8 cell numbers are reduced in c-Maf transgenic mice, suggesting that c-Maf may influence CD8 cell survival in a manner similar to CD4 cells. Here we confirm that, similar to CD4 cells, c-Maf enhances CD8 cell susceptibility to apoptosis induced by multiple stimuli, independent of IL-4. However, unlike CD4 cells, c-Maf enhancement of apoptosis is independent of Bcl-2, suggesting that c-Maf uses other mechanisms to regulate CD8 cell apoptosis. Real-time reverse transcription-polymerase chain reaction reveals that the pro-apoptotic gene Caspase 6 is upregulated in c-Maf transgenic CD8 cells, suggesting that Caspase 6 is a novel c-Maf target gene. Luciferase reporter assays and site-directed mutagenesis reveal a functional c-Maf recognition element (MARE) within the first intron of Caspase 6. Binding of c-Maf to the MARE site is detectable by chromatin immunoprecipitation using non-transgenic T-cell lysates, so c-Maf can interact with the Caspase 6 MARE site in normal T cells. Furthermore, caspase 6 activity is increased among CD8 cells from c-Maf transgenic mice following T-cell receptor engagement. As expected, activity of the downstream caspases 3 and 7 is also increased. Consistent with the ability of caspase 6 to participate in positive feedback loops, cytochrome c release and caspase 8 activation are also increased. Together these results indicated that c-Maf increases CD8 cell sensitivity to apoptotic stimuli, at least in part, by direct transactivation of Caspase 6, providing increased substrate for Caspase 6-dependent apoptosis pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。