Identifying breast cancer risk loci by global differential allele-specific expression (DASE) analysis in mammary epithelial transcriptome

通过乳腺上皮转录组中的整体差异等位基因特异性表达 (DASE) 分析识别乳腺癌风险位点

阅读:10
作者:Chuan Gao, Karthik Devarajan, Yan Zhou, Carolyn M Slater, Mary B Daly, Xiaowei Chen

Background

The significant mortality associated with breast cancer (BCa) suggests a need to improve current research strategies to identify new genes that predispose women to breast cancer. Differential allele-specific expression (DASE) has been shown to contribute to phenotypic variables in humans and recently to the pathogenesis of cancer. We previously reported that nonsense-mediated mRNA decay (NMD) could lead to DASE of BRCA1/2, which is associated with elevated susceptibility to breast cancer. In addition to truncation mutations, multiple genetic and epigenetic factors can contribute to DASE, and we propose that DASE is a functional index for cis-acting regulatory variants and pathogenic mutations, and that global analysis of DASE in breast cancer precursor tissues can be used to identify novel causative alleles for breast cancer susceptibility.

Conclusions

Our study demonstrated for the first time that global DASE analysis is a powerful new approach to identify breast cancer risk allele(s).

Results

To test our hypothesis, we employed the Illumina(®) Omni1-Quad BeadChip in paired genomic DNA (gDNA) and double-stranded cDNA (ds-cDNA) samples prepared from eight BCa patient-derived normal mammary epithelial lines (HMEC). We filtered original array data according to heterozygous genotype calls and calculated DASE values using the Log ratio of cDNA allele intensity, which was normalized to the corresponding gDNA. We developed two statistical methods, SNP- and gene-based approaches, which allowed us to identify a list of 60 candidate DASE loci (DASE ≥ 2.00, P ≤ 0.01, FDR ≤ 0.05) by both methods. Ingenuity Pathway Analysis of DASE loci revealed one major breast cancer-relevant interaction network, which includes two known cancer causative genes, ZNF331 (DASE = 2.31, P = 0.0018, FDR = 0.040) and USP6 (DASE = 4.80, P = 0.0013, FDR = 0.013), and a breast cancer causative gene, DMBT1 (DASE=2.03, P = 0.0017, FDR = 0.014). Sequence analysis of a 5' RACE product of DMBT1 demonstrated that rs2981745, a putative breast cancer risk locus, appears to be one of the causal variants leading to DASE in DMBT1. Conclusions: Our study demonstrated for the first time that global DASE analysis is a powerful new approach to identify breast cancer risk allele(s).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。