The protective effect of tianeptine on Gp120-induced apoptosis in astroglial cells: role of GS and NOS, and NF-κB suppression

噻奈普汀对 Gp120 诱导的星形胶质细胞凋亡的保护作用:GS 和 NOS 的作用以及 NF-κB 抑制

阅读:5
作者:Elzbieta Janda, Valeria Visalli, Carmela Colica, Serafina Aprigliano, Vincenzo Musolino, Nuria Vadalà, Carolina Muscoli, Iolanda Sacco, Michelangelo Iannone, Domenicantonio Rotiroti, Michael Spedding, Vincenzo Mollace

Background and purpose

Tianeptine is an antidepressant affecting the glutamatergic system. In spite of its proven clinical efficacy, molecular effects of tianeptine are not entirely clear. Tianeptine modulates cytokine expression in the CNS and protects the hippocampus from chronic stress effects. HIV infection is associated with inflammation and neuronal loss, causing HIV-associated dementia (HAD). The human immunodeficiency virus type-1 glycoprotein gp120 has been proposed as a likely aetiological agent of HAD. In this study, we determined whether tianeptine protects astroglial cells from the neurodegenerative effects of gp120. Experimental approach: Human astroglial cells were treated with gp120 and tianeptine, and viability and apoptosis was monitored by TUNEL, annexin V, and activated caspase-3 staining and flow cytometry. Protein levels of glutamine synthase (GS), inducible and constitutive nitric oxide synthases (iNOS, cNOS) and nuclear factor κB (NF-κB) pathway were determined by Western blot analysis. The respective activities were assessed indirectly by measuring glutamine and nitrite concentrations or by luciferase reporter assays. Key

Purpose

Tianeptine is an antidepressant affecting the glutamatergic system. In spite of its proven clinical efficacy, molecular effects of tianeptine are not entirely clear. Tianeptine modulates cytokine expression in the CNS and protects the hippocampus from chronic stress effects. HIV infection is associated with inflammation and neuronal loss, causing HIV-associated dementia (HAD). The human immunodeficiency virus type-1 glycoprotein gp120 has been proposed as a likely aetiological agent of HAD. In this study, we determined whether tianeptine protects astroglial cells from the neurodegenerative effects of gp120. Experimental approach: Human astroglial cells were treated with gp120 and tianeptine, and viability and apoptosis was monitored by TUNEL, annexin V, and activated caspase-3 staining and flow cytometry. Protein levels of glutamine synthase (GS), inducible and constitutive nitric oxide synthases (iNOS, cNOS) and nuclear factor κB (NF-κB) pathway were determined by Western blot analysis. The respective activities were assessed indirectly by measuring glutamine and nitrite concentrations or by luciferase reporter assays. Key

Results

Tianeptine showed an anti-apoptotic effect and prevented caspase-3 activation by gp120. The mechanism of tianeptine's action involved GS and cNOS stabilization and iNOS suppression. Moreover, tianeptine increased IκB-α levels in the absence of gp120 and blocked its degradation in response to gp120. This correlated with the suppression of basal and gp120-induced NF-κB transcriptional activity. Conclusions and implications: Tianeptine clearly exerts neuroprotective effects in vitro by suppressing the molecular pro-inflammatory effects of gp120. Studies in animal models should be performed to evaluate the potential of tianeptine as a treatment for HAD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。