Microarray analysis of mRNA levels from RAW264.7 macrophages infected with Brucella abortus

感染布鲁氏杆菌的 RAW264.7 巨噬细胞 mRNA 水平的微阵列分析

阅读:15
作者:Linda Eskra, Angela Mathison, Gary Splitter

Abstract

Identification of host responses at the gene transcription level provides a molecular profile of the events that occur following infection. Brucella abortus is a facultative intracellular pathogen of macrophages that induces chronic infection in humans and domestic animals. Using microarray technology, the response of macrophages 4 h following B. abortus infection was analyzed to identify early intracellular infection events that occur in macrophages. Of the >6,000 genes, we identified over 140 genes that were reproducibly differentially transcribed. First, an increase in the transcription of a number of proinflammatory cytokines and chemokines, such as tumor necrosis factor alpha, interleukin-1beta (IL-1beta), IL-1alpha, and members of the SCY family of proteins, that may constitute a general host recruitment of antibacterial defenses was evident. Alternatively, Brucella may subvert newly arriving macrophages for additional intracellular infection. Second, transcription of receptors and cytokines associated with antigen presentation, e.g., major histocompatibility complex class II and IL-12p40, were not evident at this 4-h period of infection. Third, Brucella inhibited transcription of various host genes involved in apoptosis, cell cycling, and intracellular vesicular trafficking. Identification of macrophage genes whose transcription was inhibited suggests that Brucella utilizes specific mechanisms to target certain cell pathways. In conclusion, these data suggest that B. abortus can alter macrophage pathways to recruit additional macrophages for future infection while simultaneously inhibiting apoptosis and innate immune mechanisms within the macrophage, permitting intracellular survival of the bacterium. These results provide insights into the pathogenic strategies used by Brucella for long-term survival within a hostile environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。