Phylogenetic-comparative analysis of the eukaryal ribonuclease P RNA

真核核糖核酸酶 P RNA 的系统发育比较分析

阅读:15
作者:D N Frank, C Adamidi, M A Ehringer, C Pitulle, N R Pace

Abstract

Ribonuclease P (RNase P) is the ribonucleoprotein enzyme that cleaves 5'-leader sequences from precursor-tRNAs. Bacterial and eukaryal RNase P RNAs differ fundamentally in that the former, but not the latter, are capable of catalyzing pre-tRNA maturation in vitro in the absence of proteins. An explanation of these functional differences will be assisted by a detailed comparison of bacterial and eukaryal RNase P RNA structures. However, the structures of eukaryal RNase P RNAs remain poorly characterized, compared to their bacterial and archaeal homologs. Hence, we have taken a phylogenetic-comparative approach to refine the secondary structures of eukaryal RNase P RNAs. To this end, 20 new RNase P RNA sequences have been determined from species of ascomycetous fungi representative of the genera Arxiozyma, Clavispora, Kluyveromyces, Pichia, Saccharomyces, Saccharomycopsis, Torulaspora, Wickerhamia, and Zygosaccharomyces. Phylogenetic-comparative analysis of these and other sequences refines previous eukaryal RNase P RNA secondary structure models. Patterns of sequence conservation and length variation refine the minimum-consensus model of the core eukaryal RNA structure. In comparison to bacterial RNase P RNAs, the eukaryal homologs lack RNA structural elements thought to be critical for both substrate binding and catalysis. Nonetheless, the eukaryal RNA retains the main features of the catalytic core of the bacterial RNase P. This indicates that the eukaryal RNA remains intrinsically a ribozyme.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。