Development of a Tetraplex Digital PCR Assay for the Detection of Invasive Snake Species in Florida, USA

开发四重数字 PCR 检测方法,用于检测美国佛罗里达州的入侵蛇类物种

阅读:6
作者:Melissa A Miller, Melody Bloch, Sergio A Balaguera-Reina, Kevin A Olejniczak, Cynthia A Fussell Persaud, Ericka E Helmick, Frank J Mazzotti, Brian W Bahder

Abstract

Florida, USA is a hotspot of biological invasions with over 500 non-native species reported. Reptiles encompass most of the non-native wildlife with over 50 species established, many of which are sympatric and are identified as invasive due to their impacts to the environment, economy, and human health and safety. Reports of new non-native reptiles occur, and many established non-native reptiles continue to expand their ranges in Florida, increasing the need for multitaxa detection and monitoring capabilities. Invasive constrictor snakes are a primary focus of management efforts due to life history traits that favor successful establishment and dispersal in Florida as well as their impacts to native wildlife and Everglades restoration efforts. While traditional survey methods that rely on visual detections fail to reliably detect invasive constrictors, environmental DNA (eDNA) has proven to be a promising method for detection of cryptic and rare species across the landscape. To address emerging needs for multispecies detection and monitoring in Florida, we developed the first tetraplex dPCR assay designed for detection of four species of invasive constrictor snakes, including Burmese pythons (Python bivittatus), northern African pythons (P. sebae), boa constrictors (Boa constrictor), and rainbow boas (Epicrates cenchria). In this tetraplex assay, no cross-amplification across species was documented. This assay serves as a valuable tool for faster and more accurate monitoring efforts of these invasive species in South Florida. Additionally, eDNA samples comprised of soil and water both tested positive for Burmese python DNA under controlled and semicontrolled conditions with DNA being detectable up to 2-weeks post removal in soil samples. Water samples yielded positive detection as quickly as 5 min after exposure to the organism. These data highlight the utility and sensitivity of this protocol for eDNA monitoring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。