One-Step Hydrothermal Synthesis of Sn-Doped Sb2Se3 for Solar Hydrogen Production

一步水热合成 Sn 掺杂 Sb2Se3 用于太阳能制氢

阅读:11
作者:Zhenbin Wang, Sanghyun Bae, Miloš Baljozović, Pardis Adams, David Yong, Erin Service, Thomas Moehl, Wenzhe Niu, S David Tilley

Abstract

Antimony selenide (Sb2Se3) has recently been intensively investigated and has achieved significant advancement in photoelectrochemical (PEC) water splitting. In this work, a facile one-step hydrothermal method for the preparation of Sn-doped Sb2Se3 photocathodes with improved PEC performance was investigated. We present an in-depth study of the performance enhancement in Sn-doped Sb2Se3 photocathodes using capacitance-voltage (CV), drive-level capacitance profiling (DLCP), and electrochemical impedance spectroscopy (EIS) techniques. The incorporation of Sn2+ into the Sb2Se3 results in increased carrier density, reduced surface defects, and improved charge separation, thereby leading to improved PEC performance. With a thin Sb2Se3 absorber layer (270 nm thickness), the Sn-doped Sb2Se3 photocathode exhibits an improved photocurrent density of 17.1 mA cm-2 at 0 V versus RHE (V RHE) compared to that of the undoped Sb2Se3 photocathode (14.4 mA cm-2). This work not only highlights the positive influence of Sn doping on Sb2Se3 photocathodes but also showcases a one-step method to synthesize doped Sb2Se3 with improved optoelectronic properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。