Comparative functional RNA editomes of neural differentiation from human PSCs

人类 PSC 神经分化的比较功能 RNA 编辑组

阅读:5
作者:Yu Zhang, Qu Zhang, Yuhong Hou, Ran Wang, Yu Wang

Abstract

RNA editing is a fundamental mechanism that constitutes the epitranscriptomic complexity. A-to-G editing is the predominant type catalyzed by ADAR1 and ADAR2 in human. Using a CRISPR/Cas9 approach to knockout ADAR1/2, we identified a regulatory role of RNA editing in directed differentiation of human embryonic stem cells (hESCs) toward neural progenitor cells (NPCs). Genome-wide landscapes of A-to-G editing in hESCs and four derivative cell lineages representing all three germ layers and the extraembryonic cell fate were profiled, with a particular focus on neural differentiation. Furthermore, a bioinformatics-guided case study identified a potential functional editing event in ZYG11B 3'UTR that might play a role in regulation of NPC differentiation through gain of miR6089 targeting. Collectively, our study established the functional role of A-to-G RNA editing in neural lineage differentiation; illustrated the RNA editing landscapes of hESCs and NPC differentiation; and shed new light on molecular insights thereof.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。