Silk fibroin-gelatin photo-crosslinked 3D-bioprinted hydrogel with MOF-methylene blue nanoparticles for infected wound healing

丝素蛋白-明胶光交联3D生物打印水凝胶与MOF-亚甲蓝纳米粒子用于感染伤口愈合

阅读:2
作者:Zhuoyuan Li, Ao Zheng, Zhiyuan Mao, Fupeng Li, Tingshu Su, Lingyan Cao, Wei Wang, Yang Liu, Chen Wang

Abstract

Photo-crosslinked hydrogel (PH) is an outstanding candidate for three-dimensional (3D) printing as a wound dressing because of its high efficiency in crosslinking and injectability. In this study, methylene blue (MB)-loaded UiO-66(Ce) nanoparticles (NPs) were synthesized to prevent drug self-aggregation and achieve the photodynamic therapy (PDT) effect for efficient antibacterial action. Then, a composite photocrosslinked silk fibroin (SF)/gelatin hydrogel loaded with MB@UiO-66(Ce) NPs (MB@UiO-66(Ce)/PH) was fabricated. The printability and the improvement of the mechanical properties of the hydrogel by the NPs were clarified. The hydrogel exhibited good biocompatibility and promoted the migration and proliferation of fibroblasts. With the PDT effect of MB@UiO-66(Ce) NPs, the hydrogel showed an excellent antibacterial effect, which became more pronounced as the concentration increased. In vivo study showed that the MB@UiO-66(Ce)/PH could fill the defects without gaps and accelerate the repair rate of full-thickness skin defects in mice. The MB@UiO-66(Ce)/PH with antibacterial properties and tissue healing-promoting ability provides a new strategy involving 3D bioprinting for preparing wound dressings.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。