Iridium Catalysts for Acceptorless Dehydrogenation of Alcohols to Carboxylic Acids: Scope and Mechanism

铱催化剂用于醇无受体脱氢生成羧酸:范围和机理

阅读:4
作者:Valeriy Cherepakhin, Travis J Williams

Abstract

We introduce iridium-based conditions for the conversion of primary alcohols to potassium carboxylates (or carboxylic acids) in the presence of potassium hydroxide and either [Ir(2-PyCH2(C4H5N2))(COD)]OTf (1) or [Ir(2-PyCH2PBu2 t)(COD)]OTf (2). The method provides both aliphatic and benzylic carboxylates in high yield and with outstanding functional group tolerance. We illustrate the application of this method to a diverse variety of primary alcohols, including those involving heterocycles and even free amines. Complex 2 reacts with alcohols to form crystallographically-characterized catalytic intermediates [IrH(η 1,η 3-C8H12)(2-PyCH2PtBu2)] (2a) and [Ir2H3(CO)(2-PyCH2PtBu2){μ-(C5H3N)CH2PtBu2}] (2c). The unexpected similarities in reactivities of 1 and 2 in this reaction, along with synthetic studies on several of our iridium intermediates, enable us to form a general proposal of the mechanisms of catalyst activation that govern the disparate reactivities of 1 and 2, respectively in glycerol and formic acid dehydrogenation. Moreover, careful analysis of the organic intermediates in the oxidation sequence enable new insights into the role of Tishchenko and Cannizzaro reactions in the overall oxidation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。