Proximity based proteomics reveals Git1 as a regulator of Smoothened signaling

基于邻近性的蛋白质组学揭示了 Git1 是 Smoothened 信号的调节器

阅读:7
作者:Jingyi Zhang, Gurleen Kaur, Eva Cai, Oscar Torres Gutierrez, Xiaoliang Liu, Sabyasachi Baboo, Jolene K Diedrich, Ju-Fen Zhu, Benjamin R Myers, John R Yates 3rd, Xuecai Ge

Abstract

The GPCR-like protein Smoothened (Smo) plays a pivotal role in the Hedgehog (Hh) pathway. To initiate Hh signaling, active Smo binds to and inhibits the catalytic subunit of PKA in the primary cilium, a process facilitated by G protein-coupled receptor kinase 2 (Grk2). However, the precise regulatory mechanisms underlying this process, as well as the events preceding and following Smo activation, remain poorly understood. To address this question, we leveraged the proximity labeling tool TurboID and conducted a time-resolved proteomic study of Smo-associated proteins over the course of Hh signaling activation. Our results not only confirmed previously reported Smo interactors but also uncovered new Smo-associated proteins. We characterized one of these new Smo interactors, Grk-interacting protein 1 (Git1), previously known to modulate GPCR signaling. We found that Git1 localizes to the base of the primary cilium, where it controls the cilium transport of Grk2, an early event in Hh signaling. Loss of Git1 impairs Smo phosphorylation by Grk2, a critical step for Smo-PKA interaction, leading to attenuated Hh signaling and reduced cell proliferation in granule neuron precursors. These results revealed a critical regulatory mechanism of Grk2 phosphorylation on Smo in the primary cilium. Our Smo-TurboID proteomic dataset provides a unique resource for investigating Smo regulations across different stages of Hh pathway activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。