Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis

电化学石英晶体微天平分析阐明膜损失和吸附氧化还原酶氢键的作用

阅读:6
作者:Vivek M Badiani, Samuel J Cobb, Andreas Wagner, Ana Rita Oliveira, Sónia Zacarias, Inês A C Pereira, Erwin Reisner

Abstract

The immobilization of redox enzymes on electrodes enables the efficient and selective electrocatalysis of useful reactions such as the reversible interconversion of dihydrogen (H2) to protons (H+) and formate to carbon dioxide (CO2) with hydrogenase (H2ase) and formate dehydrogenase (FDH), respectively. However, their immobilization on electrodes to produce electroactive protein films for direct electron transfer (DET) at the protein-electrode interface is not well understood, and the reasons for their activity loss remain vague, limiting their performance often to hour timescales. Here, we report the immobilization of [NiFeSe]-H2ase and [W]-FDH from Desulfovibrio vulgaris Hildenborough on a range of charged and neutral self-assembled monolayer (SAM)-modified gold electrodes with varying hydrogen bond (H-bond) donor capabilities. The key factors dominating the activity and stability of the immobilized enzymes are determined using protein film voltammetry (PFV), chronoamperometry (CA), and electrochemical quartz crystal microbalance (E-QCM) analysis. Electrostatic and H-bonding interactions are resolved, with electrostatic interactions responsible for enzyme orientation while enzyme desorption is strongly limited when H-bonding is present at the enzyme-electrode interface. Conversely, enzyme stability is drastically reduced in the absence of H-bonding, and desorptive enzyme loss is confirmed as the main reason for activity decay by E-QCM during CA. This study provides insights into the possible reasons for the reduced activity of immobilized redox enzymes and the role of film loss, particularly H-bonding, in stabilizing bioelectrode performance, promoting avenues for future improvements in bioelectrocatalysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。