Melatonin attenuates MPP+-induced autophagy via heat shock protein in the Parkinson's disease mouse model

褪黑素在帕金森病小鼠模型中通过热休克蛋白减弱 MPP+ 诱导的自噬

阅读:6
作者:Yinli Guo, Chengbo Liu

Background

This study investigates the protective properties of melatonin in an in vivo Parkinson's disease (PD) model, focusing on the underlying mechanisms involving heat shock proteins (HSPs).

Conclusion

Melatonin exerts a protective effect against MPP+-induced damage to dopaminergic neurons, presumably by upregulating HSP70, which inhibits neuronal autophagy.

Methods

Twelve adult male C57BL/6 mice were randomly divided into four groups (normal control, melatonin control, Parkinson's model, and melatonin treatment; n = 3 per group) and housed in a single cage. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was injected intraperitoneally in the Parkinson's model and treatment groups to establish a subacute PD model, while controls received saline. Limb motor ability was assessed 1 h after the final injection using behavioral tests, including the open field test to evaluate central zone entries and average movement. Dopamine transporter (DAT) expression in the striatum was analyzed by immunohistochemistry, and Western blot was used to measure autophagy proteins and HSP70 levels.

Results

The PD mouse model was successfully established through MPTP stimulation. Compared to the normal control group, the model group showed a significant reduction in the frequency of entering the central zone and average movement. The number of DAT-positive cells in the brain also decreased significantly. The expression levels of HSP70 and CDK5 were significantly lower, while the expression levels of LC3 II /LC3I and p62 increased significantly. In the MT treatment group, both the frequency of entering the central zone and the average movement were significantly higher compared to the model group. DAT-positive cells in the midbrain also increased significantly. The expression levels of HSP70 and CDK5 were significantly elevated, while the expression levels of LC3 II /LC3I and p62 protein were significantly decreased.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。