Atlas-scale single-cell DNA methylation profiling with sciMETv3

利用 sciMETv3 进行图谱级单细胞 DNA 甲基化分析

阅读:1
作者:Ruth V Nichols ,Lauren E Rylaarsdam ,Brendan L O'Connell ,Zohar Shipony ,Nika Iremadze ,Sonia N Acharya ,Andrew C Adey

Abstract

Single-cell methods to assess DNA methylation have not achieved the same level of cell throughput per experiment compared to other modalities, with large-scale datasets requiring extensive automation, time, and other resources. Here, we describe sciMETv3, a combinatorial indexing-based technique that enables atlas-scale libraries to be produced in a single experiment. To reduce the sequencing burden, we demonstrate the compatibility of sciMETv3 with capture techniques to enrich regulatory regions, as well as the ability to leverage enzymatic conversion, which can yield higher library diversity. We showcase the throughput of sciMETv3 by producing a >140,000 cell library from human middle frontal gyrus split across four multiplexed individuals using both Illumina and Ultima sequencing instrumentation. Finally, we introduce sciMET+ATAC to enable high-throughput exploration of the interplay between chromatin accessibility and DNA methylation within the same cell. Keywords: DNA methylation; epigenetics; neuroscience; single cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。