Silk fibroin as a biomaterial substrate for corneal epithelial cell sheet generation

丝素蛋白作为角膜上皮细胞片生成的生物材料基质

阅读:2
作者:Jingbo Liu, Brian D Lawrence, Aihong Liu, Ivan R Schwab, Lauro A Oliveira, Mark I Rosenblatt

Conclusions

SF, a novel biomaterial, could support corneal epithelial cells to proliferate, differentiate, and stratify, retaining the normal characteristic epithelium phenotype. Compared with AM, its unique features, including the transparency, ease of handling, and transfer, and inherent freedom from disease transmission, make it a promising substrate for corneal wound repair and tissue-engineering purposes.

Methods

Primary human and rabbit corneal epithelial cells and immortalized human corneal limbal epithelial cells were cultured on the SF and denuded AM, respectively. The biological cell behavior, including the morphology, proliferation, differentiation, and stratification, on the two substrates was compared and analyzed.

Purpose

To evaluate a silk fibroin (SF) biomaterial as a substrate for corneal epithelial cell proliferation, differentiation, and stratification in vitro compared with denuded human amniotic membrane (AM).

Results

Corneal epithelial cells can adhere and proliferate on the SF and denuded AM with a cobblestone appearance, abundant microvilli on the surface, and wide connection with the adjacent cells. MTT assay showed that cell proliferation on denuded AM was statistically higher than that on SF at 24 and 72 hours after plating (P = 0.001 and 0.0005, respectively). Expression of ΔNp63a and keratin 3/12 was detected in primary cell cultures on the two substrates with no statistical difference. When cultured at the air-liquid interface for 7 days, cells on SF could form a comparable stratified graft with a 2- to 3-cell layering, which compared similarly to AM cultures. Conclusions: SF, a novel biomaterial, could support corneal epithelial cells to proliferate, differentiate, and stratify, retaining the normal characteristic epithelium phenotype. Compared with AM, its unique features, including the transparency, ease of handling, and transfer, and inherent freedom from disease transmission, make it a promising substrate for corneal wound repair and tissue-engineering purposes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。