FMR1 genetically interacts with DISC1 to regulate glutamatergic synaptogenesis

FMR1 与 DISC1 发生遗传相互作用,调节谷氨酸能突触形成

阅读:8
作者:Takato Honda #, Kazuki Kurita #, Yuko Arai, Himani Pandey, Akira Sawa, Katsuo Furukubo-Tokunaga

Abstract

Synaptic development and functions have been hypothesized as crucial mechanisms of diverse neuropsychiatric disorders. Studies in past years suggest that mutations in the fragile X mental retardation 1 (FMR1) are associated with diverse mental disorders including intellectual disability, autistic spectrum disorder, and schizophrenia. In this study, we have examined genetical interactions between a select set of risk factor genes using fruit flies to find that dfmr1, the Drosophila homolog of the human FMR1 gene, exhibits functional interactions with DISC1 in synaptic development. We show that DISC1 overexpression in the dfmr1null heterozygous background causes synaptic alterations at the larval neuromuscular junctions that are distinct from those in the wild-type background. Loss of dfmr1 modifies the DISC1 overexpression phenotype in synaptic formation, suppressing the formation of synapse boutons. Interaction between the two genes was further supported molecularly by the results that dfmr1 mutations suppress the DISC1-mediated upregulations of the postsynaptic expression of a glutamate receptor and the expression of ELKS/CAST protein, Bruchpilot, in presynaptic motoneurons. Moreover, DISC1 overexpression in the dfmr1null heterozygous background causes downregulation of a MAP1 family protein, Futsch. These results thus suggest an intriguing converging mechanism controlled by FMR1 and DISC1 in the developing glutamatergic synapses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。