Phenolic 1,3-diketones attenuate lipopolysaccharide-induced inflammatory response by an alternative magnesium-mediated mechanism

酚类 1,3-二酮通过另一种镁介导机制减轻脂多糖诱导的炎症反应

阅读:8
作者:Morena Zusso, Giulia Mercanti, Federica Belluti, Rita Maria Concetta Di Martino, Andrea Pagetta, Carla Marinelli, Paola Brun, Eugenio Ragazzi, Rita Lo, Stefano Stifani, Pietro Giusti, Stefano Moro

Background and purpose

Toll-like receptor 4 (TLR4) plays a key role in the induction of inflammatory responses both in peripheral organs and the CNS. Curcumin exerts anti-inflammatory functions by interfering with LPS-induced dimerization of TLR4-myeloid differentiation protein-2 (MD-2) complex and suppressing pro-inflammatory mediator release. However, the inhibitory mechanism of curcumin remains to be defined. Experimental approach: Binding of bis-demethoxycurcumin (GG6) and its cyclized pyrazole analogue (GG9), lacking the 1,3-dicarbonyl function, to TLR4-MD-2 was determined using molecular docking simulations. The effects of these compounds on cytokine release and NF-κB activation were examined by ELISA and fluorescence staining in LPS-stimulated primary microglia. Interference with TLR4 dimerization was assessed by immunoprecipitation in Ba/F3 cells. Key

Purpose

Toll-like receptor 4 (TLR4) plays a key role in the induction of inflammatory responses both in peripheral organs and the CNS. Curcumin exerts anti-inflammatory functions by interfering with LPS-induced dimerization of TLR4-myeloid differentiation protein-2 (MD-2) complex and suppressing pro-inflammatory mediator release. However, the inhibitory mechanism of curcumin remains to be defined. Experimental approach: Binding of bis-demethoxycurcumin (GG6) and its cyclized pyrazole analogue (GG9), lacking the 1,3-dicarbonyl function, to TLR4-MD-2 was determined using molecular docking simulations. The effects of these compounds on cytokine release and NF-κB activation were examined by ELISA and fluorescence staining in LPS-stimulated primary microglia. Interference with TLR4 dimerization was assessed by immunoprecipitation in Ba/F3 cells. Key

Results

Both curcumin analogues bound to the hydrophobic region of the MD-2 pocket. However, only curcumin and GG6, both possessing the 1,3-diketone moiety, inhibited LPS-induced TLR4 dimerization, activation of NF-κB and secretion of pro-inflammatory cytokines in primary microglia. Consistent with the ability of 1,3-diketones to coordinate divalent metal ions, LPS stimulation in a low magnesium environment decreased pro-inflammatory cytokine release and NF-κB p65 nuclear translocation in microglia and decreased TLR4-MD-2 dimerization in Ba/F3 cells. Curcumin and GG6 also significantly reduced cytokine output in contrast to the pyrazole analogue GG9. Conclusions and implications: These results indicate that phenolic 1,3-diketones, with a structural motif able to coordinate magnesium ions, can modulate LPS-mediated TLR4-MD-2 signalling. Taken together, these studies identify a previously uncharacterized mechanism involving magnesium, underlying the inflammatory responses to LPS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。