K-Means Segmentation of Underwater Image Based on Improved Manta Ray Algorithm

基于改进Manta Ray算法的水下图像K均值分割

阅读:5
作者:Donglin Zhu, Linpeng Xie, Changjun Zhou

Abstract

Image segmentation plays an important role in daily life. The traditional K-means image segmentation has the shortcomings of randomness and is easy to fall into local optimum, which greatly reduces the quality of segmentation. To improve these phenomena, a K-means image segmentation method based on improved manta ray foraging optimization (IMRFO) is proposed. IMRFO uses Lévy flight to improve the flexibility of individual manta rays and then puts forward a random walk learning that prevents the algorithm from falling into the local optimal state. Finally, the learning idea of particle swarm optimization is introduced to enhance the convergence accuracy of the algorithm, which effectively improves the global and local optimization ability of the algorithm simultaneously. With the probability that K-means will fall into local optimum reducing, the optimized K-means hold stronger stability. In the 12 standard test functions, 7 basic algorithms and 4 variant algorithms are compared with IMRFO. The results of the optimization index and statistical test show that IMRFO has better optimization ability. Eight underwater images were selected for the experiment and compared with 11 algorithms. The results show that PSNR, SSIM, and FSIM of IMRFO in each image are better. Meanwhile, the optimized K-means image segmentation performance is better.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。