A Customized Knee Antibiotic-Loaded PMMA Spacer: A Preliminary Design Analysis

定制膝关节抗生素载药 PMMA 垫片:初步设计分析

阅读:6
作者:Marco Balato, Carlo Petrarca, Antonio Quercia, Aniello Riccio, Andrea Sellitto, Jessica Campi, Anna Borriello, Mauro Zarrelli, Giovanni Balato

Abstract

A preliminary design of customized antibiotic-loaded poly-methyl-methacrylate (ALPMMA) spacer characterized by an appropriate footprint according to the specific patient's anatomy and a reliable mechanical response to severe functional loads (i.e., level walking and 45° bent knee) is reported. The targeted virtual prototyping process takes origin from a novel patented 3D geometrical conceptualization characterized by added customization features and it is validated by a preliminary FEM-based analysis. Mechanical and thermomechanical properties of the antibiotic-doped orthopedic PMMA cement, which will be used for the future prototype manufacturing, were measured experimentally by testing samples taken during a real day-running orthopedic surgery and manufactured according to the surgeon protocol. FEM analysis results indicate that small area is subjected to intensive stresses, validating the proposed geometry from the mechanical point of view, under the two loading scenarios, moreover the value of safety margins results positive, and this is representative of the lower stress magnitude compared to the critical material limits. The experimental data confirm that the presence of antibiotic will last during the surgeon period moreover, the temperature dependent modulus of the bone cement is slightly affected by the body range temperature whereas it will drastically drop for higher temperature out the range of interest. A complete customization, according to a patient anatomy, and the corresponding real prototype spacer will be manufactured by 3D printing techniques, and it will be validated by destructive testing during the second stage of this activity before commercialization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。