Evolution of Digestive Enzymes and RNASE1 Provides Insights into Dietary Switch of Cetaceans

消化酶和 RNASE1 的进化为鲸类饮食转变提供了见解

阅读:6
作者:Zhengfei Wang, Shixia Xu, Kexing Du, Fang Huang, Zhuo Chen, Kaiya Zhou, Wenhua Ren, Guang Yang

Abstract

Although cetaceans (whales, porpoises, and dolphins) have multi-chambered stomachs, feeding habits of modern cetaceans have dramatically changed from herbivorous to carnivorous. However, the genetic basis underlying this dietary switch remains unexplored. Here, we present the first systematic investigation of 10 digestive enzymes genes (i.e., CYP7A1, CTRC, LIPC, LIPF, PNLIP, PGC, PRSS1, SI, SLC5A1, and TMPRSS15) of representative cetaceans, and the evolutionary trajectory of RNASE1 in cetartiodactylans. Positive selections were detected with proteinases (i.e., CTRC, PRSS1, and TMPRSS15) and lipases (i.e., CYP7A1, LIPF, and PNLIP) suggesting that cetaceans have evolved an enhanced digestion capacity for proteins and lipids, the major nutritional components of their prey (fishes and invertebrates). In addition, it was found that RNASE1 gene duplicated after the cetartiodactylan speciation and two independent gene duplication events took place in Camelidae and Ruminantia. Positive selection was detected with RNASE1 of Camelidae and Bovidae, suggesting enhanced digestive efficiency in the ruminants. Remarkably, even though the ancestors of cetaceans were terrestrial artiodactyls that are herbivorous, modern cetaceans lost the pancreatic RNASE1 copy with digestive function, which is in accordance with the dietary change from herbivorous to carnivorous. In sum, this is the first study that provides new insights into the evolutionary mechanism of dietary switch in cetaceans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。