Evolutionary novelty of Apolipoprotein D facilitates metabolic plasticity in lepidopteran wings

载脂蛋白 D 的进化新颖性促进了鳞翅目昆虫翅膀的代谢可塑性

阅读:5
作者:Shunze Jia, Rongqiao Li, Yinghui Li, Yuxin Huang, Minmin Liu, Yanyan Zhou, Yanting Liang, Zhihua Hao, Yusong Xu, Huabing Wang

Abstract

Understanding metabolic plasticity of animal evolution is a fundamental challenge in evolutionary biology. Owing to the diversification of insect wing morphology and dynamic energy requirements, the molecular adaptation mechanisms underlying the metabolic pathways in wing evolution remain largely unknown. This study reveals the pivotal role of the duplicated Apolipoprotein D (ApoD) gene in lipid and energy homeostasis in the lepidopteran wing. ApoD underwent significant expansion in insects, with gene duplication and consistent retention observed in Lepidoptera. Notably, duplicated ApoD2 was highly expressed in lepidopteran wings and encoded a unique C-terminal tail, conferring distinct ligand-binding properties. Using Bombyx mori as a model organism, we integrated evolutionary analysis, multiomics, and in vivo functional experiments to elucidate the way duplicated ApoD2 mediates lipid trafficking and homeostasis via the AMP-activated protein kinase pathway in wings. Moreover, we revealed the specific expression and functional divergence of duplicated ApoD as a key mechanism regulating lipid homeostasis in the lepidopteran wing. These findings highlight an evolutionary scenario in which neofunctionalization conferred a novel role of ApoD in shaping adaptive lipid metabolic regulatory networks during wing phenotypic evolution. Overall, we provide in vivo evidence for the functional differentiation of duplicate genes in shaping adaptive metabolic regulatory networks during phenotypic evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。