Vascular disease-causing mutation, smooth muscle α-actin R258C, dominantly suppresses functions of α-actin in human patient fibroblasts

血管病致病突变平滑肌 α-肌动蛋白 R258C 显著抑制人类患者成纤维细胞中的 α-肌动蛋白功能

阅读:5
作者:Zhenan Liu, Audrey N Chang, Frederick Grinnell, Kathleen M Trybus, Dianna M Milewicz, James T Stull, Kristine E Kamm

Abstract

The most common genetic alterations for familial thoracic aortic aneurysms and dissections (TAAD) are missense mutations in vascular smooth muscle (SM) α-actin encoded by ACTA2 We focus here on ACTA2-R258C, a recurrent mutation associated with early onset of TAAD and occlusive moyamoya-like cerebrovascular disease. Recent biochemical results with SM α-actin-R258C predicted that this variant will compromise multiple actin-dependent functions in intact cells and tissues, but a model system to measure R258C-induced effects was lacking. We describe the development of an approach to interrogate functional consequences of actin mutations in affected patient-derived cells. Primary dermal fibroblasts from R258C patients exhibited increased proliferative capacity compared with controls, consistent with inhibition of growth suppression attributed to SM α-actin. Telomerase-immortalized lines of control and R258C human dermal fibroblasts were established and SM α-actin expression induced with adenovirus encoding myocardin-related transcription factor A, a potent coactivator of ACTA2 Two-dimensional Western blotting confirmed induction of both wild-type and mutant SM α-actin in heterozygous ACTA2-R258C cells. Expression of mutant SM α-actin in heterozygous ACTA2-R258C fibroblasts abrogated the significant effects of SM α-actin induction on formation of stress fibers and focal adhesions, filamentous to soluble actin ratio, matrix contraction, and cell migration. These results demonstrate that R258C dominantly disrupts cytoskeletal functions attributed to SM α-actin in fibroblasts and are consistent with deficiencies in multiple cytoskeletal functions. Thus, cellular defects due to this ACTA2 mutation in both aortic smooth muscle cells and adventitial fibroblasts may contribute to development of TAAD and proliferative occlusive vascular disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。