Inhibitory effect of IL-17 on neural stem cell proliferation and neural cell differentiation

IL-17对神经干细胞增殖及神经细胞分化的抑制作用

阅读:5
作者:Zichen Li, Ke Li, Lin Zhu, Quancheng Kan, Yaping Yan, Priyanka Kumar, Hui Xu, Abdolmohamad Rostami, Guang-Xian Zhang

Background

IL-17, a Th17 cell-derived proinflammatory molecule, has been found to play an important role in the pathogenesis of autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). While IL-17 receptor (IL-17R) is expressed in many immune-related cells, microglia, and astrocytes, it is not known whether IL-17 exerts a direct effect on neural stem cells (NSCs) and oligodendrocytes, thus inducing inflammatory demyelination in the central nervous system.

Conclusions

IL-17 blocks proliferation of NSCs, resulting in significantly reduced numbers of astrocytes and OPCs. Thus, in addition to its proinflammatory role in the immune system, IL-17 may also play a direct role in blocking remyelination and neural repair in the CNS.

Methods

We first detected IL-17 receptor expression in NSCs with immunostaining and real time PCR. We then cultured NSCs with IL-17 and determined NSC proliferation by neurosphere formation capability and cell number count, differentiation by immunostaining neural specific markers, and apoptosis of NSCs by flow cytometry.

Results

NSCs constitutively express IL-17R, and when the IL-17R signal pathway was activated by adding IL-17 to NSC culture medium, the number of NSCs was significantly reduced and their ability to form neurospheres was greatly diminished. IL-17 inhibited NSC proliferation, but did not induce cytotoxicity or apoptosis. IL-17 hampered the differentiation of NSCs into astrocytes and oligodendrocyte precursor cells (OPCs). The effects of IL-17 on NSCs can be partially blocked by p38 MAPK inhibitor. Conclusions: IL-17 blocks proliferation of NSCs, resulting in significantly reduced numbers of astrocytes and OPCs. Thus, in addition to its proinflammatory role in the immune system, IL-17 may also play a direct role in blocking remyelination and neural repair in the CNS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。