Structural determinants for affinity enhancement of a dual antagonist peptide entry inhibitor of human immunodeficiency virus type-1

人类免疫缺陷病毒 1 型双重拮抗肽进入抑制剂亲和力增强的结构决定因素

阅读:9
作者:Hosahudya Gopi, M Umashankara, Vanessa Pirrone, Judith LaLonde, Navid Madani, Ferit Tuzer, Sabine Baxter, Isaac Zentner, Simon Cocklin, Navneet Jawanda, Shendra R Miller, Arne Schön, Jeffrey C Klein, Ernesto Freire, Fred C Krebs, Amos B Smith, Joseph Sodroski, Irwin Chaiken

Abstract

Structure-activity correlations were investigated for substituted peptide conjugates that function as dual receptor site antagonists of HIV-1 gp120. A series of peptide conjugates were constructed via click reaction of both aryl and alkyl acetylenes with an internally incorporated azidoproline 6 derived from the parent peptide 1 (12p1, RINNIPWSEAMM). Compared to 1, many of these conjugates were found to exhibit several orders of magnitude increase in both affinity for HIV-1 gp120 and inhibition potencies at both the CD4 and coreceptor binding sites of gp120. We sought to determine structural factors in the added triazole grouping responsible for the increased binding affinity and antiviral activity of the dual inhibitor conjugates. We measured peptide conjugate potencies in both kinetic and cell infection assays. High affinity was sterically specific, being exhibited by the cis- but not the trans-triazole. The results demonstrate that aromatic, hydrophobic, and steric features in the residue 6 side-chain are important for increased affinity and inhibition. Optimizing these features provides a basis for developing gp120 dual inhibitors into peptidomimetic and increasingly smaller molecular weight entry antagonist leads.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。