miRNA-106a and prostate cancer radioresistance: a novel role for LITAF in ATM regulation

miRNA-106a 与前列腺癌放射抗性:LITAF 在 ATM 调节中的新作用

阅读:5
作者:Christianne Hoey, Jessica Ray, Jouhyun Jeon, Xiaoyong Huang, Samira Taeb, Jarkko Ylanko, David W Andrews, Paul C Boutros, Stanley K Liu

Abstract

Recurrence of high-grade prostate cancer after radiotherapy is a significant clinical problem, resulting in increased morbidity and reduced patient survival. The molecular mechanisms of radiation resistance are being elucidated through the study of microRNA (miR) that negatively regulate gene expression. We performed bioinformatics analyses of The Cancer Genome Atlas (TCGA) dataset to evaluate the association between miR-106a and its putative target lipopolysaccharide-induced TNF-α factor (LITAF) in prostate cancer. We characterized the function of miR-106a through in vitro and in vivo experiments and employed transcriptomic analysis, western blotting, and 3'UTR luciferase assays to establish LITAF as a bona fide target of miR-106a. Using our well-characterized radiation-resistant cell lines, we identified that miR-106a was overexpressed in radiation-resistant cells compared to parental cells. In the TCGA, miR-106a was significantly elevated in high-grade human prostate tumors relative to intermediate- and low-grade specimens. An inverse correlation was seen with its target, LITAF. Furthermore, high miR-106a and low LITAF expression predict for biochemical recurrence at 5 years after radical prostatectomy. miR-106a overexpression conferred radioresistance by increasing proliferation and reducing senescence, and this was phenocopied by knockdown of LITAF. For the first time, we describe a role for miRNA in upregulating ATM expression. LITAF, not previously attributed to radiation response, mediates this interaction. This route of cancer radioresistance can be overcome using the specific ATM kinase inhibitor, KU-55933. Our research provides the first report of miR-106a and LITAF in prostate cancer radiation resistance and high-grade disease, and presents a viable therapeutic strategy that may ultimately improve patient outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。