Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers

改善带有三甘氨酸接头的 99mTc 标记环状精氨酸-甘氨酸-天冬氨酸 (RGD) 二聚体的肿瘤摄取和排泄动力学

阅读:5
作者:Jiyun Shi, Lijun Wang, Young-Seung Kim, Shizhen Zhai, Zhaofei Liu, Xiaoyuan Chen, Shuang Liu

Abstract

This report describes the synthesis of two new cyclic RGD (Arg-Gly-Asp) dimers, 3 (E[G(3)-c(RGDfK)](2)) and 4 (G(3)-E[G(3)-c(RGDfK)](2)), and their corresponding conjugates 5 (HYNIC-E[G(3)-c(RGDfK)](2): HYNIC = 6-(2-(2-sulfonatobenzaldehyde)hydrazono)nicotinyl) and 6 (HYNIC-G(3)-E[G(3)-c(RGDfK)](2)). Integrin alpha(v)beta(3) binding affinities of 5 and 6 were determined by displacement of (125)I-echistatin bound to U87MG glioma cells. (99)(m)Tc complexes 7 ([(99m)Tc(5)(tricine)(TPPTS)]: TPPTS = trisodium triphenylphosphine-3,3',3''-trisulfonate) and 8 ([(99m)Tc(6)(tricine)(TPPTS)]) were prepared in high yield and high specific activity. Biodistribution and imaging studies were performed in athymic nude mice bearing U87MG glioma and MDA-MB-435 breast cancer xenografts. It was found that G(3) linkers are particularly useful for increasing integrin alpha(v)beta(3) binding affinity of cyclic RGD dimers and improving the tumor uptake and clearance kinetic of their (99)(m)Tc radiotracers. Complex 8 is a very promising radiotracer for the early detection of integrin alpha(v)beta(3)-positive tumors and may have the potential for noninvasive monitoring of tumor growth or shrinkage during antiangiogenic treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。