Clawing through evolution: toxin diversification and convergence in the ancient lineage Chilopoda (centipedes)

通过进化寻找线索:古代蜈蚣谱系中的毒素多样化和趋同

阅读:6
作者:Eivind A B Undheim, Alun Jones, Karl R Clauser, John W Holland, Sandy S Pineda, Glenn F King, Bryan G Fry

Abstract

Despite the staggering diversity of venomous animals, there seems to be remarkable convergence in regard to the types of proteins used as toxin scaffolds. However, our understanding of this fascinating area of evolution has been hampered by the narrow taxonomical range studied, with entire groups of venomous animals remaining almost completely unstudied. One such group is centipedes, class Chilopoda, which emerged about 440 Ma and may represent the oldest terrestrial venomous lineage next to scorpions. Here, we provide the first comprehensive insight into the chilopod "venome" and its evolution, which has revealed novel and convergent toxin recruitments as well as entirely new toxin families among both high- and low molecular weight venom components. The ancient evolutionary history of centipedes is also apparent from the differences between the Scolopendromorpha and Scutigeromorpha venoms, which diverged over 430 Ma, and appear to employ substantially different venom strategies. The presence of a wide range of novel proteins and peptides in centipede venoms highlights these animals as a rich source of novel bioactive molecules. Understanding the evolutionary processes behind these ancient venom systems will not only broaden our understanding of which traits make proteins and peptides amenable to neofunctionalization but it may also aid in directing bioprospecting efforts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。