Predicting the formation of NADES using a transformer-based model

使用基于变压器的模型预测 NADES 的形成

阅读:9
作者:Lucas B Ayres, Federico J V Gomez, Maria Fernanda Silva, Jeb R Linton, Carlos D Garcia

Abstract

The application of natural deep eutectic solvents (NADES) in the pharmaceutical, agricultural, and food industries represents one of the fastest growing fields of green chemistry, as these mixtures can potentially replace traditional organic solvents. These advances are, however, limited by the development of new NADES which is today, almost exclusively empirically driven and often derivative from known mixtures. To overcome this limitation, we propose the use of a transformer-based machine learning approach. Here, the transformer-based neural network model was first pre-trained to recognize chemical patterns from SMILES representations (unlabeled general chemical data) and then fine-tuned to recognize the patterns in strings that lead to the formation of either stable NADES or simple mixtures of compounds not leading to the formation of stable NADES (binary classification). Because this strategy was adapted from language learning, it allows the use of relatively small datasets and relatively low computational resources. The resulting algorithm is capable of predicting the formation of multiple new stable eutectic mixtures (n = 337) from a general database of natural compounds. More importantly, the system is also able to predict the components and molar ratios needed to render NADES with new molecules (not present in the training database), an aspect that was validated using previously reported NADES as well as by developing multiple novel solvents containing ibuprofen. We believe this strategy has the potential to transform the screening process for NADES as well as the pharmaceutical industry, streamlining the use of bioactive compounds as functional components of liquid formulations, rather than simple solutes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。