LINE-1-derived poly(A) microsatellites undergo rapid shortening and create somatic and germline mosaicism in mice

LINE-1 衍生的 poly(A) 微卫星快速缩短并在小鼠中产生体细胞和生殖细胞嵌合体

阅读:5
作者:Fiorella C Grandi, James M Rosser, Wenfeng An

Abstract

Interspersed and tandem repeat sequences comprise the bulk of mammalian genomes. Interspersed repeats result from successive replication by transposable elements, such as Alu and long interspersed element type 1 (L1). Microsatellites are tandem repeats of 1-6 base pairs, among which poly(A) microsatellites are the most abundant in the human genome. The rise and fall of a microsatellite has been depicted as a life cycle. Previous studies have demonstrated that Alu and L1 insertions are a major source of A-rich microsatellites owing to the concurrent formation of a poly(A) DNA tract at the 3'-end of each insertion. The fate of such poly(A) tracts has been studied by surveying the length distribution of genomic resident Alu and L1 insertions. However, these cross-sectional studies provide no information about the tempo of mutation immediately after birth. In this study, de novo L1 insertions were created using a transgenic L1 mouse model and traced through generations to investigate the early life of poly(A) microsatellites. High frequencies of intra-individual and intergenerational shortening were observed for long poly(A) tracts, creating somatic and germline mosaicism at the insertion site, whereas little variation was observed for short poly(A) alleles. As poly(A) microsatellites are the major intrinsic signal for nucleosome positioning, their remarkable abundance and variability make them a significant source of epigenetic variation. Thus, the birth of poly(A) microsatellites from retrotransposons and the subsequent rapid and variable shortening represent a new way with which retrotransposons can modify the genetic and epigenetic architecture of our genome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。